First Order Impulsive Differential Inclusions with Periodic Conditions

نویسندگان

  • John R Graef
  • Abdelghani Ouahab
چکیده

In this paper, we present an impulsive version of Filippov's Theorem for the first-order nonresonance impulsive differential inclusion y (t) − λy(t) ∈ F (t, y(t)), a.e. characterize the jump of the solutions at impulse points t k (k = 1,. .. , m.). Then the relaxed problem is considered and a Filippov-Wasewski result is obtained. We also consider periodic solutions of the first order impulsive differential inclusion y (t) ∈ ϕ(t, y(t)), a.e. t ∈ J\{t 1 ,. .. , t m }, y(t + k) − y(t − k) = I k (y(t − k)), k = 1,. .. , m, y(0) = y(b), where ϕ : J × R n → P(R n) is a multi-valued map. The study of the above problems use an approach based on the topological degree combined with a Poincaré operator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Periodic Boundary Value Problems of First Order Discontinuous Impulsive Differential Inclusions

In this paper we prove existence results for extremal solutions of the first order discontinuous impulsive differential inclusions with periodic boundary conditions and impulses at the fixed times under certain monotonicity conditions of the multi-valued functions.

متن کامل

On Periodic Boundary Value Problems of First-order Perturbed Impulsive Differential Inclusions

In this paper we present an existence result for a first order impulsive differential inclusion with periodic boundary conditions and impulses at the fixed times under the convex condition of multi-functions.

متن کامل

A Study of Impulsive Fractional Differential Inclusions with Anti–periodic Boundary Conditions

In this paper, we prove the existence of solutions for impulsive fractional differential inclusions with anti-periodic boundary conditions by applying Bohnenblust-Karlin’s fixed point

متن کامل

Structure of Solutions Sets and a Continuous Version of Filippov’s Theorem for First Order Impulsive Differential Inclusions with Periodic Conditions

In this paper, the authors consider the first-order nonresonance impulsive differential inclusion with periodic conditions y′(t)− λy(t) ∈ F (t, y(t)), a.e. t ∈ J\{t1, . . . , tm}, y(t+k )− y(t − k ) = Ik(y(t − k )), k = 1, 2, . . . ,m, y(0) = y(b), where J = [0, b] and F : J × R → P(R) is a set-valued map. The functions Ik characterize the jump of the solutions at impulse points tk (k = 1, 2, ....

متن کامل

Existence of Three Anti-periodic Solutions for Second-order Impulsive Differential Inclusions with Two Parameters

Applying two three critical points theorems, we prove the existence of at least three anti-periodic solutions for a second-order impulsive differential inclusion with a perturbed nonlinearity and two parameters.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008